Ultrapotent Anesthetics Use and Safety

Sathya K. Chinnadurai
DVM, MS, DACZM, DACVAA, DACAW

Properties of Ideal Restraint Drug

- High Therapeutic Index
- Compatible with other drugs
- Works in multiple species
- Short induction period
- Completely reversible

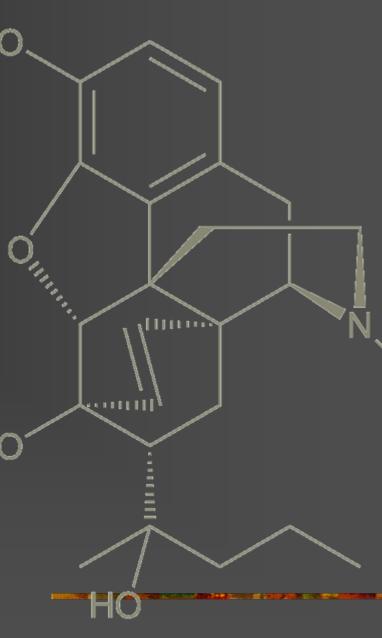
- Non-irritating
- Small volumes
- Stable solution
- Economical

Ultrapotent Anesthetics

High potency or high concentration, compounded formulations UP opioids require special **DEA** certification Include opioid and non-opioid drugs

Etorphine HCl, 10 mg/ml

Ultrapotent Anesthetics


Rapid, reversible anesthesia
IM administration
Zoo and field use
Megavertebrates
Hoofstock
Some carnivores

Ultrapotent Opioids^{HO}

Etorphine (M99)

- Synthesized by Bentley & Hardy 1963
- Used for elephant immobilization 1973
- μ, δ, and κ opioid receptors
 1000-4000x more potent than morphine

Ultrapotent Opioids

Carfentanil

analogue of fentanyl

100 times more potent than fentanyl and 10,000 times more than morphine

Thiafentanil (A3080)

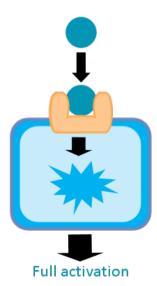
 slightly less potent than carfentanil, with shorter duration

Pharmacokinetics-Opioids

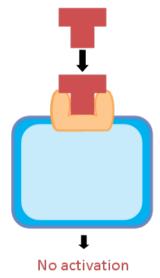
Highly lipophilic drugs

 Rapidly distributes throughout extravascular compartments, including the brain and adipose tissue

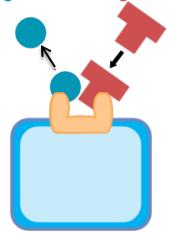
Sequestration in fat can prolong activity


Metabolized mainly by the liver and excreted via the kidney

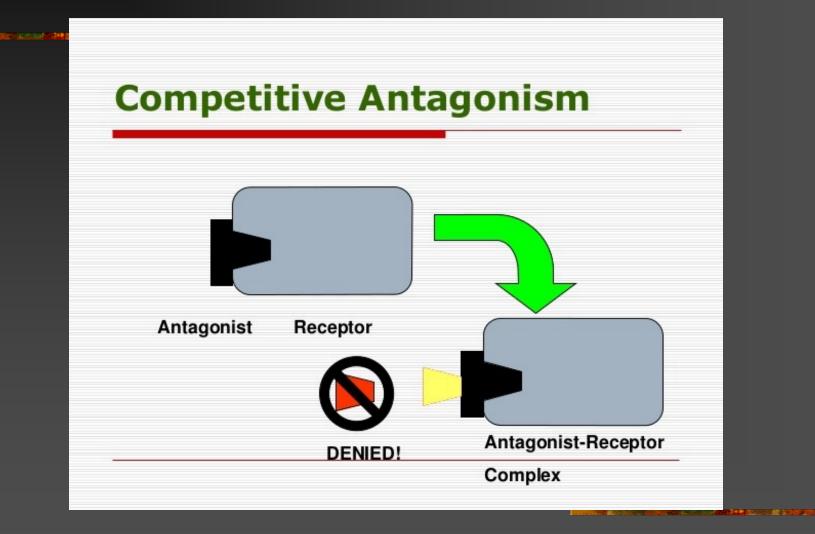
Agonists and Antagonists


Agonists - Drugs that occupy receptors and activate them.

Antagonists - Drugs that occupy receptors but do not activate them Antagonists block receptor activation by agonists.


Agonist

Antagonist



Agonist Vs Antagonist

Opioid Antagonists

- Naloxone/Naltrexone
 - Displace opioid agonists at receptor due to greater affinity
 - CNS stimulation, minimal CV effects
 - Remember analgesia reversed too
- Drug specific information
 - Naltrexone activity 2-9x > Naloxone, longer duration of action
 - Naloxone duration of action is shorter than opioids so may get renarcotization

Opioid Reversal for Animals

Naltrexone HCI, 50 mg/ml

• Given IM, IV or split

 High doses in humans rarely associated with liver failure

Opioid Antagonists

To reverse carfentanil 100mg of naltrexone for every 1 mg of carfentanil To reverse etorphine 25mg to 1mg etorphine (some use higher) To reverse thiafentanil 10-50mg to 1 mg thiafentanil Naloxone: less potent and shorter duration Approved for human use

Renarcotization

- Duration of action of reversal often shorter than the opioid
- Recurrence of sedation after apparent recovery
- Risk of injury, drowning, conspecific aggression
- Using shorter acting opioids can reduce the risk
- Reducing dose of opioid needed by adding alpha-2 or ketamine

Theoretical Lethal Human Dose

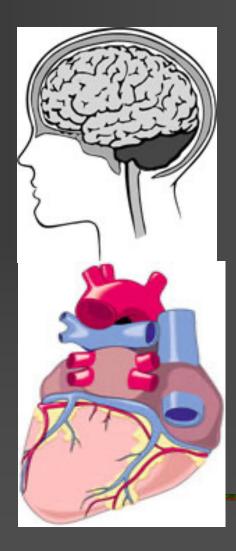
- Absorbed via inhalation, injection, broken skin or through mucous membranes
- Etorphine HCI: 0.05 mg
- Carfentanil Citrate:
 0.02mg
- Doses used in animals: 0.5-10.0 mg
- An animal dose could contain 10 to 200 lethal human doses

Personal Protective Equipment

- Reversal agent drawn up before narcotic
- Long-sleeves and long pants
- Gloves
- Face shield

Potential Points of Exposure

- Drawing up drug
- Making dart
- Darting accident
- Retrieving dart
- Contact with dart wound



CNS and CV effects in Humans

- Sedation
- Lethargy
- Seizures
- Coma
- Respiratory depression and arrest
- Hypotension
- Bradycardia

Opioid Side Effects in Animals

Wide safety margin and dose range Excitement, aimless wandering Myopathy (secondary) Respiratory depression Hypertension, bradycardia Regurgitation Muscle rigidity Renarcotization

Not Just Ultrapotent Opioids

Occupational Medicine 2010;60:494–495 Advance Access publication on 23 June 2010 doi:10.1093/occmed/kqq088

CASE REPORT

Accidental poisoning with detomidine and butorphanol

N. Hannah

Department of Medicine, Raigmore Hospital, Inverness, UK

Correspondence to: N. Hannah, FY2, Department of Medicine, Raigmore Hospital, Old Perth Road, Inverness IV2 3UJ, UK. Tel: +44 (0)1463 704 000 ext. 6514; fax: +44 (0)1463 704596; e-mail: neilhannah@nhs.net

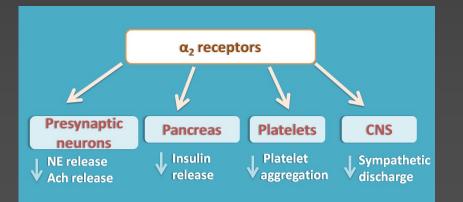
Abstract	This is a case report concerning a veterinarian who spilled detomidine and butorphanol on dermatitic hands while sedating a horse. This resulted in acute poisoning from which the patient spontaneously recovered with supportive management. Veterinarians often suffer from occupational dermatitis and handle strong sedatives with no gloves while working around unpredictable animals. Thus, this group is at risk of accidental self-poisoning from this method.
Key words	Butorphanol; detomidine; drugs; farmers; poisoning; veterinarian; workers.

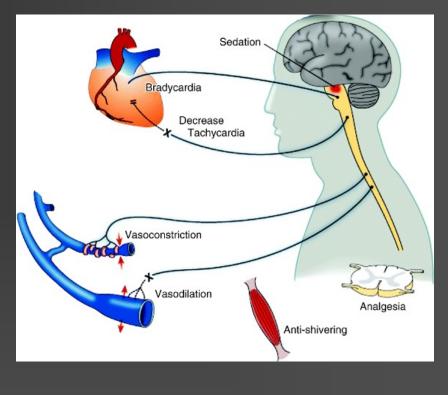
Alpha-2 Agonists

- Xylazine
 Detomidine
 Romifidine
 Dexmedetomidine
 Medetomidine
 - + High Concentration

Alpha-2 Agonists

Potent, reliable sedation


- Used in many veterinary species
 - Exotics
 - Wildlife
- Reversible



Alpha-2 Receptor Location

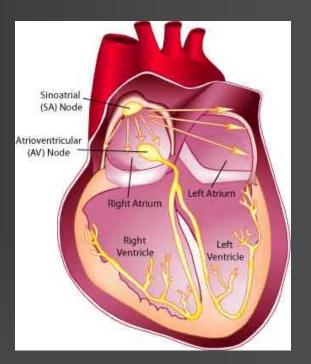
Brain (locus ceruleus)
Spinal cord (dorsal horn)
Peripheral vasculature
Other tissues

Alpha-2 Agonist: Cardiovascular Effects

Biphasic CV response

1st phase
 Binding of α-2 receptor in vasculature

 vasoconstriction
 increased systemic vascular resistance (SVR)


 Increased blood pressure
 Reflex bradycardia

Alpha-2 Agonist: CV Effects

- Slowed electrical conduction though heart
 negative dromotropy
 bradycardia
 heart block

 1st, 2nd, 3rd degree
 - ventricular arrhythmias

ECG HR =	41 BPM	* FILTER	= ON * 25 MM/SI
-fr-	-		
			V
1			

Xylazine premedication- dog

Alpha-2 Agonist: Respiratory Effects

Mild to moderate respiratory depression

- Effects respiratory centers in medulla
- Depress response to hypercapnia
- Effects greater with other CNS depressants

Can cause hypoxemia in some species
 Activation of pulmonary intravascular macrophages
 Pulmonary edema

Alpha-2 Antagonists

Compete for alpha-2 receptor
 bind, but do not activate the receptor

Reverse both the sedation and analgesia

Reversal agents

Choose agent with similar alpha-2:alpha-1 specificity

Dose based on dose of agonist not mg/kg dosage

Alpha-2 Antagonists

Reversal Agents

- yohimbine (for xylazine)
- atipamezole (for (dex)medetomidine)
- tolazoline least specific reversal (preferred in ruminants)

Preferable to choose reversal with similar specificity as agonist

- Can use any to reverse any agonist
 - More difficult to estimate dose

Potential risks at post-mortem

DOI: 10.7589/2017-06-132

Journal of Wildlife Diseases, 54(2), 2018, pp. 362–365 © Wildlife Disease Association 2018

Tissue Residue Levels after Immobilization of Rocky Mountain Elk (*Cervus elaphus nelsoni*) using a Combination of Nalbuphine, Medetomidine, and Azaperone Antagonized with Naltrexone, Atipamezole, and Tolazoline

Lisa L. Wolfe,^{1,5} Pauline Nol,² Matthew P. McCollum,² Travis Mays,³ Morgan E. Wehtje,² William R. Lance,⁴ Mark C. Fisher,¹ and Michael W. Miller¹ ¹Colorado Division of Parks and Wildlife, 4330 Laporte Avenue, Fort Collins, Colorado 80521, USA; ²US Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Wildlife Livestock Disease Investigations Team, 4101 Laporte Avenue, Fort Collins, Colorado 80521, USA; ³Texas A&M Veterinary Medical Diagnostic Laboratory, Texas A&M University System, 483 Agronomy Rd., College Station, Texas 77841, USA; ⁴Wildlife Pharmaceuticals, Inc., 1230 Ash Street, Windsor, Colorado 80550, USA; ⁵Corresponding author (email: lisa.wolfe@state.co.us)